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CHAPTER I

INTRODUCTION

1. Historical background

Although the history of the kinetic theory of gases ha.s been traced
1*

back to ancient Greece, its scientific development started with other

branches of modern science, The first main success came in 1859 when

Maxwell 2 discovered the law of the dist,,ibution of the molecular veloci-

ties for a gas in equilibrium and rediscovered the equipartition of the

mean molecular energy and as a consequence the ideal gas laws.
,5

Definite advances were made in 1879 by Boltzmann who discussed es-

pecially the approach to equilibrium. He established the famous integro-

differential equation (the Boltzmann equationl which the one particle dis-

tribution function must satisfy whatever the state of the gas is. There-

after one of the main prnhlb'-t has been how to solve this equation and

how to derive macroscopic equations such as the hydrodynamical equations.

In 1917 Enskog published his Uppsala dissertation in which he gave

a general method for the determination of the distribution function from

the Boltzmnn equation. His method was a modification of a method first

proposed by filbert. 5 He derived the general formulae for the viscosity,

heat conduction and diffusion of gases. At almost the saew time Chap-

man #7 obtained independently the identical results with a slightly dif-

ferent method.

S ined nimbers refer to the bibliography on pp. 96 and 97.I
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A very important extension of the theory was made by Enskog7 8 in

1922. Using the elastic sphere model for tLe molecular interactions, he

s _ied how the theory could be modified for dense gases. If one regards

the Boltzmnnn equation as the description of the state of an ideal gas

which is not in equilibriumt then the Enskog theory may be considered as

an attempt to describe the non-equilibriua properties of a non-ideal gas,

according to the ideas of van der Waals (1873).

During the later part of these developments of the non-unifont gas

theory, the statistical wvchanics of the equilibrium state was firmly es-

tablished on the ensemble theory by Gibbs. 9 In 1937, M~yer l 0 succeeded

in deriving the equation of state for dense gases with arbitrary central

molecular forces from the point of view of statistical mechanics. It is

therefore understandable that in the next decade whe general trend of the

kinetic theory was the elucidation of the connection of the Boltzmann

equation and of the Enskog theory with the Liouville equation, which is

the basis of the ensemble theory. The first investigations in this di-

rection were done mainly by Born and Green, and by Kirkwood and his

collaborators. 12 They introduced the higher order distribution functions,

and found the hierarchy of equations, which will be discussed in Chapter II.

2. Assumwptionis in the Boltsmum Nquation

Before discussing the kinetic theory further, it is important to

know the basic assumptions on which the Boltinn equation depends. It

is well understood now, that there are two such assuptions. The first

one is the assumption of binary encounters. Since the molecules of a gas

interact with each other through a short rang, force (r Wn r o is of the

order of 10- cat), for a dilute Vs the averap volum per perticle will

be large compared to the volum of the acticn sphere hsro/. Ttwrorv
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the probability of finding two molecules in the same action sphere is very

small, and the probability of finding three or more molecules interacting

simultaneously will be quite negligible. The neglect of such triple in-

teractions amounts to the assumption of binary encounters. Clearly for

dense gases this assumption will have to be modified.

The second assumption is the so-called "Stosszahlansatz"1 3 about the

number of pairs of molecules %hich are in the position to collide during

a given short time interval. It is well known that this statistical as-

sumption makes the equation irreversib.le in time. Since the gas consid-

ered as a mechanical system is reversible in time, it is clear that the

time used in the Boltzmnn equation is not the exact mechanical time, but

is measured on a coarser scale, in which in each time element a great num-

ber of collisions occur. While the Stosszahlansatz seems very plausibie

and is verified by many true consequences of the Boltzmann equation, it

is desirable to replace the Ansatz by more general statistical assumptions,

so that the extension to triple and higher order collisions would become

possible.

In the attempt to derive the Boltzmann equation from the Liouville

equation, Kirkwood 12 a ,b had to average the latter equation over a very

short time of the order of the collision time. In his theory, only the

binary collisions are considered and the Stosszahlansatz is replaced by

a new assumption. Kirkwood assumes that if the two particles involved in

a binary encounter are far apart from each other, the binary distribution

function is the product of the one particle distribution functions at the

corresponding positions. This assumtion seem plausible vhen the ps is

not very far from the state of the local equilibrium and it turns out to

be equivalent to the "Stosszahlansatz" when the spatial distribution of
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the molecules of the gas varies very slowly. For denser gases, where

triple collisions become important, we shall see that it will be neces-

sary to modify the Kirkwood assumption.

3. The general idea of Bogolubov

At the same time with Born and Green and Kirkwood, Bogolubov pro-

posed a more satisfactory theory. This theory can be interpreted in

various ways (see for instance, reference 15); we will try in the follow-

ing to show its relation to the Kirkwood idea of time averaging or "coarse

graining in time."

There are three features which are characteristic for the Bogolubov

theory. The first one is the use of successive time scales of increasing

roughness. Then, it will always be assumed that the theory describes the

state of a gas, which does not deviate very far from a local equilibrium

state. And finally all properties of the gas will be expanded in powers

of the average concentration, analogous to the virial development used in

the theory of the equilibrium state. In this way, triple and higher order

collisions are successively taken into account.

Imagine at time t a 0 a severely disturbed state of the gas very far

removed from the equilibrium state. The temporal development of the state

of the gas could then be described only by the Liouville equation. We as-

sume that after a very short time of the order of the collision time

-r*l0 sec, the state of the gas relaxes to a quasi-equilibrium or

"normal" state, in which the description of the state of the gas can be

simplified. The effects of the intermolecular forces on the one particle

distribution function are -.oothed out, and hence it will vary little in

a time of order r0. But the binary and higher order distribution func-

tionz still suffer the direct effect of the intermolecular forces and
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will change rapidly. However if we average these functions successively

over times of order To, the remaining time dependence of these functions

would be due to the change of the one particle distribution function.

Therefore on the first "coarse grained" time scale, which we will call

the kinetic time, the higher order distribution functions would depend

on time only through the one particle distribution function.

In this "kinetic" stage, all the higher distribution functions will

be expanded in powers of the average concentration. Ac' ually the expan-

sion parameter is the average density of particle times ro, which wl be

small if the gas is far from the condensation point. One then assumes

that the lowest order term is the product of the one particle distribu-

tion functions in certain phases of the states of the particles. This is

the modification of the Kirkwood assumption which can be used for denser

gases.

After a time of the order of the time between collisions t o 46i0 "s

sec, even the description using the kinetic time scale becomes unneces-

sarily detailed for moat purposes. There are exceptions; for instance for

strong shockwaves, the kinetic time description is required to investi-

gate the almost discontinuous changes of the properties of the gas. How-

ever in most cases, the gas is so close to local equilibrium everywhere

that the change of the macroscopic quantities (density, temperature and

the macroscopic masu velocities) is slow compared to the detailed change

of the first distribution function. Therefore if one averages successive-

ly by over times of order to, then on this second coarse grained time scale

(which we will call hydrodynaic time), one can say that the one particle

distribution functin depends on the time only through the macroscopic

quantities.
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The development of the theory in this "drodvnAm." stage, turns

out to be very similar to the theory of Chapman-Enskog. All quantities

are again expanded in powers of a parameter p, which is a measure of the

uniformity of the macroscopic quantities. Actually p is of the order of

the relative change of these quantities over a mean free path.

. The purpose of the present dissertation

The purpose of this dissertation is to elucidate the Bogolubov the-

ory as much as possible and to carry out the theory till the hydrodynami-

cal stage (which Bogolubov only indicated), in order to obtain the formal

expressions for the viscosity coefficients and heat conductivities of a

dense gas. There are two main problems. The first one is the solution

of the equations of motion for three or more interacting particles. The

second problem is to obtain the distribution functions assuming that the

first problem is solved. We will be concerned an with the second prob-

lem. It turns out that the two problems can formally be separated, and

that it is possible to find the deviations of the distribution functions

from their local equilibrium forms in terms of the formal solutions of

the particle mechanics.

The results obtained
... iiii .. now

1) The relation between the Bogolubov theo'ry and the 'Cirkwood theory

is clarified.

2) The effect of triple collisions of particle is estimated in the

kinetic theory.

9) The theory of the hydrodynamical stage has been developed up to

the second order in the uniformity paraieter p.
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a) In the first order of the uniformity parameter, one obtains the

ideal or Euler hydrodynamical equations, in which the pressure as func-

tion of the density has the same form as in equilibrium according to the

Mayer theory.10 tlso the energy equation is derived, which in this ap-

proximation corresponds to adiabatic changes, and in which the energy

density is again the same as in the equilibrium theory.

b) In the second order of the uniformity parameter, one obtains the

Stokes-Navier equations. There occur two viscosity coefficients, for

which one obtains expansions in the number density of the forms:

(0Ac) (1) n 2  (2) (~aI" + n Tj + n 1 + .. (1.1a)

(1) 2 (2)
SnU + n (12 + ... (l.lb)

where the 0jo) is tlie Chapman-Enskog value for the .k'&: viscosity co-

efficient, and n2 Ji the bulk viscosity. In the energy equatlon a term

appears corresponding to heat conduction, and for the heat conductivity

one obtains the analogous expansion:

(0) +n (i) na (2)n.2. (1.2)

where r( 0 ) is again the Chapman-Enskog value for the heat conductivity

coefficient.

4) 'When the molecules of gas are hard spheres, the parts of the

formal coefficients n4j) and r ( j ) which depend on the binary collisions

can be evaluated, and these parts agree up to the first order in n with

the Enskog theory of dense gases. Even for this simple model the complete

first order terms -ve not been found because of the difficulty of the me-

cha.nics of triple collisions.



CHAPTER II

GENERAL DESCRIPTION OF THE SYSTEM

i. The Liouville equation

In the following, we shall consider the behavior of a system of N

identical molecules in a vessel (volume V), which obey the law of clas-

sical mechanics. To simplify the problem, we restrict ourselves to point

molecules repelling each other by a known monotonic central force poten-

tial 0 between each pair (i,j), which is a function of the distance be-

tween the pair only and which has a finite very small range ro, so that

0() * and 0(ro) 0 0. Furthermore, the system is supposed to be not

under any outside force except the force due to the wall potential of

the container.

Let the coordinates and momenta of the i-th particle be xi a (Iioh)-

The state of 'he system at time t is completely determined by the set x1 ,

X2 ... XN. Usually it is convenient to introduce the 6N-dimensional phase

space for the system as a whole, the r-space.16 The state of the system

is then represented by a point in this space, and the temporal develop-

ment of the system is completely represented by the trajectory of this

point.

For a system with a large number of particles it is physically not

meaningfLl to assign the initial state coletely, since only some average

values corresponding to the results of macroscopic measurements are known.

Therefore one must consider, in the language of Gibbs, 9 an ensemble of

identical system differing In their initial states and follow the stream-

8
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ing of the "ensemble fluid" in time. In other words, one must consider

a probability distribution DN(xx,...xN; t) in the r-space and follow its

development in time.

According to the definition of the probability distribution function,

• " DN(xl,..xN; t) dxl...dxN = 1 (2.1)

using the notation dxi a dqidpi. The change in the probability distribu-

tion function with time is determined by Liouville's equation:

WN Dyj(2.2)

where RN is the Hamilton function, For the system considered, it is gi-

ven by:

N r.2 N
HN - A- ~ i+ OW (qi) + E Oij (2.3)

im1 L' i<

where m is the mass of each molecule, Oij a O(lRi-'jl) is the interaction

pctr.ntia1, and OW(qi) is the potential produced by the walls of the vessel,

an -hat

if qi ii inside the vessel.

{+: at the walls of the vessel.

The Poisson bracket {HN, Pjj ca be written as:

where for any vector ye have written a m £rad, . Introducing the

"Ihniltanian" operator

-Pl 0 (2.5)
lei xj
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with

Qjj a CC) + (2.6)

one can put the Liouville equation (2.2) in the form:

__N (2.N 7)C)t

if the particles are insidz the vessel.

The Liouville equation is an immediate consequence of the equations

of motion and allows us in principle to find DN(xl...xN; t) if the initial

distribution DN(xl...xN;O) is given. Since all particles are indistin-

guishable, one must choose DN(xl...xN;O) as a symmetric function of x1 ...

xN. For this initial distribution, DN(Xl...XN; t) remains symneric be-

cause %N or X(x ... xN) are symmetric with respect to all particles.

2. The B-B-G-K-Y equations

For very large N, it is practically impossible to obtain an explicit

expression for DN(xl...xN; t), because this involves the precise integra-

tion of motions. This is also not required since one Is only interested

in the change of some macroscopic quantities with time.

The macroscopic quantities which have the most direct physical mean-

ing ae for a small volume around some point In space the number of particles,

the average velocity ot the group of particles, the average total kinetic en-

ergy 1f the group of particles, and the average total energy cf the group of

particles. FortunatelAj these quantities depend not c th complete distribu-

tion functiom DN(x ... xNj t) in r-.pace, but on the probabilities of find-

ing a single particle in a certain rs d; d around a phase point (q,p),



or of finding two arbitrary particles it, certain ranges d. d,. and d da
rpi) and (qamPa) irrespective of the phases of

all other particles. These probability functione are obtained by integra-

ting DN(xx...XN; t) over all xj except one or two. Since D?(xl. o .x N ; t)

is synmetric in xj,...,xN, these functions will be the same whatever single

or pair of particles is chosen.

By integrating tle Liouville equation, one obtains a hierarchy of

equations derived independently and simultaneously by Bogolubov, Born

and Green, l l a Kirkwood, 1 2 and Yvon 1 7 and therefore called the B-B-G-K-Y

equations. Following Bogolubov, introduce the partial distribution func-

tions by:

-1 DNx.(2.8)
4Fe(xi,...xs;t) ffx;t)dxs+...dxN(

In the limit If # *, V - c and v a V/N finite, if one considers only those

molecules deep inside the vesjel, one may forget the effect of the walls.

Therefore, integrating Liouville's equation in the form given by (2.7)

over xe~l,.. . ,x N and mult.Lplying by Va, one obtains immediately:

s+l<k<i -u

Since (xlp,...xN;t) must be assued to vanish for large 1 and 111j1:
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j..j dXS+l...dxN Pi 6DN(xl...xN;t) = 0 i > 6+1

J' dX+sl-dxN 9-. DN(xl...xN;t) = 0 k >1 > s+l

For the term:

a~ " dx.+l'".dXN Gij DN(l"°Nt

s+LQ:5N

all the contributions from different values of J are the same because of

the symetry of DN(xl,...xN;t). Therefore using the definition (2.8)

again:

VS(N-S) f dxs+l Gis f dxst2..dxNDN(Xl..-xN;t) "

N-S 3'F
V-S. fdxs+l@is+,Fs+l(xl" "xs+lpt 

)

which in the limit stated above becomes:

dy i F (x]...s l

for fixed a. Hence:

7+ F. - 1 s+l gig+, F+l s 1#2 p... (2.9)

Laterp we *hall be especially interested in .he cases sal and s=2 which

become, using the explicit forms of 2 and X:

-N &i) W P O?{;t) . I f dX % , F(x,,g;t) (2.10)

- ?fdz(G,3, ,(,z,,xgjt) (2.11)



CHAPTER III

THE BOGOLUBOV THEORY OF THE KINETIC STAGE

1. The basic equations

As explained in the introduction, we will assume that on the first

coarse grained time scale (the kinetic time), the higher order distribu-

tion functions depend on time only through the first distribution func-

tion F1, so that:

Fs(x 1 ...xst) -- 0 Fs(x...xs jF1 ) (A)

where the vertical bar denotes that Fs depends functionally on F1 . The

whole time dependence sits in F1 , and the form (A) is assumed to be valid

for any initial distribution DN(xi...xN;O) after an initial period of or-

der To . The first cistribution function is expected to vary smoothly on

the kinetic time scale and to fulfill the basic kinetic equation of the

form:

A(xJFj) (B)

The wiknwn functionals Fp(x 1 ...xsIFI) and A(xjIF,) must follow from the

hlerarhy of equations (2.9). To determine them in successive approxima-

tion, we develop both functionals in powers of 1/v (virial expansion):

(3.2)

1 I3



Substituting the series expansion for F2 in the first equation (2.10)

of the hierarchy one obtains:

"t """ afJ (#j1)--

and ccmparing this with the kinetic equation (B), we get inuediately:

A.(%,1F, = -?Iqn(33a)

A,(zF;) c Ja ,,a P ' c i ) (3.3b)

and in general

At %1"T) " a NA 0I's, FO-, , (3-30

Since Fs(x...x s IF1) depends on time only through Fl, one can express

its change in time by the kinetic equation (B). Let the first order var-

iation of FO(x...xe IF]) for the variation o. F1 to F. + EF. be c

(x1...x8 IF,8F,), then obviously, Vs(xL...xs F,,F 1 ) is linear in the

(8F1 )'s which will have different arguments. The argument X of 8F1 (X;t)

is determined by the functional form of Fs(x 1 ... xs IF1 ). Replacing

6F1 (X;t) by A(XIFI(;t)) one gets the change of F5 (x1 ... xBlFI) in

time. writing:

we obtain:

On substituting the 11T expmieions of Fs(x 1.. xs Ira) Ad A(lIF)
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where the operators acting on any functional *(xj ... o IF,) of F1, are de-

fined by:

CoMaring (3.4b) with the B-B-G-K-Y equations for s > 2. using the series

expansion for Fs+i and equating equal powers of l/v, one obtains:

A 3'je ,1 AsDF ±fJXJ~g2A 91 SO F7 (3.6b)

,3 ir

These equations are functional equations for F1 , so they must hold for

any function F1 .

2. Determination of the functionals Fai)(xX -- XIIF1 )

Tke program for solving the basic equations (3.3a,b,c) and (3.6a,b,c)

is as follows. The first equation (3.6a) should determine Fjo); this in

turn determines A1 according to (3.3b), so that also DF - ) is known.

Hence in (3.6b) the right hand side is known, and (3.6b) should determine

F( ) from which A& follows, and so on. In ths section we will there-

fore assum that the right hand sides of the equations (3.6a,bc) are

known, and s how the (mknow funetiocals 7(1) can be found.
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It should be emphasized thaL equations (3.6,b,c) contain functional

derivatives. Therefore, just as with first order differential equations,

soe sort of initial or boundary conditions are needed in order to deter-

mine the solutions completely. To formulate these conditions, we intro-

(k)
duce the streaming operator E, (xx...x k ) by:

It is the time displacement operator (over time T) in the streaming of

the k particles in their phase space under the influence of their mutual

interactions. One easily sees that If ( 1 + ±) Is the phase of particle

1, then in the notion of the k particles the phase of particle I a time

r later is - Bk)i]. Also when X(x 1 .. xk) is an arbitrary

function of the phases of the k particles, then:

Clearly the S4k) forms an additive Abelian, one parameter group of op.

(k) 4k .$k) S(k)istemreerators vith paramter v; 4) S41) k) - i e r

of 4k) an S k) . 1.

We will now assu following Bogolubov that for any of the function-

als Fs:

£S, Fs (x, ;S Fe:t)

3-'57 ' F,(;W t W,

TM basic nature of this asvpti should be emphasised. It replaces

ad generalises the Bltsmnn Btosahlasats and the Kirkwood asmtion.

It peses smeh the requirawnt that outside sa actton volme the
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correlation between the particles vanishes. This Is especially clear

when the system is spatially uniform. Since in geiieral:

clearly in the spatially uniform case S-()F.(xt) = Fj(x;t). Because

there is a strong repulsion between the particles, the relative distances

of the s particles in the phase S(B)X]L .. Ss)xs will be large if in

the phase x,, ... x. they were in each others action spheres. One can

also say that the two basic assumptions (A) and (C) for the s particle

distribution function are the two properties of the equilibrium distri-

bution, which one assumes that F. already has in the kinetic stage. In

Section C we will actually see that (C) is fulfilled in equilibrium.

Using the virial development for F., (C) implies that:

ad

To find, with the condition (CI) Fjo), one replaces in (3.6s) the

functinal derivative by an ordinary derivative in the following way.

Put,, In DoF()(x....xIF), the function S(l), for Fi, then by the

dfnition (35) of the operator Dk,

Suppose the ,ariable of =a of tn Ao(i$)7) la the brachat Is I a

th"s
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A. (x~sF 145()1~X by (3.3a)

by (3.7)

since F3 (X;t) is independent of r. From (3.-a):

'IIT

Hence, considering the linearity of the functional derivative:

-, , IF, Fe- i F"I T

On replacing FI appearing in (3.6a) by SB(1)F 1 ,

then, the "solution" of the equation is:

I'Fs)~ F z;F (3.10)

because of (3.7). Operating with the S ) from the left gives:

This is the condition which the fumctional form of F(0)

should satisfy. In the above equation, the left hand side is indepen-

dent of , so this mast hold for an arbitrax r. Therefore, takift

7
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(3.11)

according to (Cj).

To find next F( )(x1 .. .x5 IF,), put:

'IF

then (3.6b) becomes:

After the same calculation as before:

AD rsf-oz F)JI0 F

and from the functional equation (3.13) for Fl, (replacing F, by S(')F):

utt n,..., X6 .

t3 .A r F
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then clearly:

or "(z s F') (3.16)

ad one finds:

F,

This my be integrated easily, yielding:

... ,; ,007,- As of,-S4r - ' (3.17)

from which follows:

Again the left hand side is independent of T, therefore taking the limit

dr *+ :

rT (X .F.TT

" j. r=or) (,'I F (3.18)

according to (Ck).

The hi r are found in the same way. One gets:

where:

F. (32.
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Determination of the functionals Ai (x IF1)

According to (. b) A,(xfF1 ) follows from FS°)(x, 1 IF.), which

we write in the form:

F) F~ (Z...;U~ (3.21)

where the subscripts -o, +w imply the limit indicated in equation (3.11),

and where for abbreviation:

Me Sr) .... X') (3.22)

To separate the mechanics from the distribution functions, it is often

convenient to write instead of (3.21):

FS so ,;14,T= (3.23)

where corresponding t- xi a (qi,P, i a (i,) Is the Dirac

5-function. From (3.3b) one then can write:

with

Turning nov to Aa(xaIFI),, we have first to find ,11)(XI 1x2 F.i

Accordift to the definition of the operator D1 :

.-- - . - -------
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so(,l
jet

Vhere we have omitted x's in the arguments of the operators S( Since

according to (3.11):

1,"(7,rJjF) = °'

J

jet

one finds:

M JC te ll.~ t) 3) e9.,) J

-~ 3 7T F,, in)jT~Vt)
Ill (3.26,

Using equation (3.18) one then can write F~l)(xixIF,) in the form an-

alogous to (3.23):

cr,. f Jft):g . (3.27)

where i ] s the operator occurring between square bracket in (3.26).

Note that this Is syinetric in x, and xg. Finally from (3.3c):

with
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i. The "size" of A ( 11

The ratio of A2 to A1 should be of order ro, if ro is the range

of the interaction potential, so that the development parameter in the

kinetic equation is really ro/v. This will be so for dimensional reasons

provided that the integrals in A2 are convergent and extend only over

the action volume of the three particles x3L x, Xs.

To see this, consider fs(x1I4tat3). The integrand of the x2 in-
tegration will vanish if J q > r. because of the 0 operator.

Consequently one needs to consider only those x2  for which R q <

ro . For this phase (x ,,) the S(2) (XIX) operator separates the

particles 1 and 2 by a distance r o  in the time T P0A and from that

time on the distance of the particles increases. Putting:

let T' be the time for which IL-n I 2ro. Now the operator occurring

in the i-integral can be written as:

J' 4; "(,c~ &3~) S2 . "

Forv>v', ez(I ) - 0 m for frled x5  at least one of the

rated by and QM( if ) =at be ro, snce XII ad T are sepa.

rated by a diatanve blgpr then 2r0 . 8%Wpce %* 2 xx) Op0 but

-~ - . A
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0 3,3) ; From the definition of S(3))(ri(t 3 ), one then has:

and since in this case S()o3.X2 S$(1,1 ) rx 1 one sees that the op-

erator (3-30) goes to zero. This is also the case if 0as2ta,x3) = 0

but $13("1,X3) 0, so that one can conclude that the r-integral will be

convergent, and that the integrand will only be different from zero for

a tiwm of the order of a collision time.

2. Spatially uniform systems

When F1 (x1 ;t) does not depend ozrthe 41, i.e., when the system is

spatially uniform, it is possible to simplify the expressions for A1(x1lIF,)

and A2(X IFI).

We will show that in this case A, can be reduced to the Boltzmnn

collision integral.

Proof: Since F1 is independent of the spatial coordinates F1 (.1 ;t) =

Fl(.I;t ) and FI(Qa;t) - FI(4 ;t). In equation (3.24) one can then per-

form the j-integrations, and since the S() operator does not change the

mmenta, one gets:

Ai it ffiflJ11,~j.~~~cI~)(.l

with:

tat S(.)(X ,)% J12), L. 1,2 tkan It is , il proed Ust the

are fictoms of m 3ad of the relativ-e coordimt. r'81 40f
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Since 012 also depends only on the relative coordinates, one sees that

by taking in the x2 -integral the origin for * in q, that 02 and there-

fore A, will depend only on Pl, as it should. We will write instead

of (3.32):

nAO 1a~ 017, 7aS .)

The p (2) are the constant initial impulses in the binary collision

governed by the Hamiltonian H2 which leads to the phases x 1 ,x 2 at time

zeru. Therefore:

Hence according to the definition of the Poiason bracket:

Hs 1 0 P -

or

(Am

') (J~jIi +j ~~ 1

In (,.,,), take for the r2 integration cylindrical coordinates with the

axis in the direction of the relative velocity t 4 1 (P 4 ). Call the
a

coordiazte along this axis A, and the polar coordinates perpendicular to

the axis Then:

- - - a -
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where g = 1j. The A-integration can be done inediately:

-4 1 R (S j I
At A a -m the two particles are outside their interaction region, and

since the S(2) (x X2 ) operation will never bring them together

On the other hand for A 4 w., although the particles are then also out-

side their interaction range, the S(2)(xxx2) operation will produce a

collision. Therefore:

where the are the impulses of the restituting collision (P1",2*) .

(P, P).

The collision cross section I(g,Q) is usually defined by:

4d~Jy = IQ;,6)JC
using the differential solid angle d and the scattering angle 0. There-

fore one obtains:

On substituting Q(Jht) into (3.31) (in place of a2 (x1j hrlw)], and

integrating over and *:

which Is exactly the collision integral in the Boltzmann equation.
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Turning now to the A2 (x1 IF1 ), one can write in the spatially uni-

form case:

where

(zI ~ ~4 = J2' 8 Jr A5~3f4d r, t. S+ .

- A~L*)(4 3,f~,+O~S~*.)J ~ ~(5.38)

and all the S( l) operators are omitted since they have no effect. Call

the x3 -integral in (3.38) O(xlx 2 ), then one sees by the reasoning used

in Section 4, that O(x l x2 ) * o if• I- 1 2r.. furthermore

it is not difficult to show by the use of centre of MAss and relative co-

ordinates, that O(xl,x 2 ) depends only on P P2 and r21. Therefore

almo S(2)(XIx 2 ) O(xIx2 ) will depend orly on these variables, and for

, r m the result will be zero since the S( ) operator will completely

separate the particles 1 and 2. Next, according to the definition of

S(2 (X X2 ):

go:

8- (4-i re + d&r)SLC

Calling for & uoient S.2( xs) O(xIx 2 ) a (xx 2 ). then one can write

(3.38) in the form

+ ( ,T)£ha~ oro o
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In the third term the T-integril can be done and since the upper limit

does not contribute, one obtai.is:

which puts in evidence that f13  depends only on Hence also A2

will depend only on pl, as it should in the spatially uniform case.

6. The equilibrium state

One should expect that the basic kinetic equation (B) will lead to

the state of thermodynaiic equilibrium and that then F1  and all the

higher distribution functions will agree with tbe results obtained from

the microcanonical ensemble, which for a large system is equivalent to

the canonical ensemble:

'0 (2 .. 40. - e)

where 0 a kT and A a normalization factor. From (3.40) the contracted

distribution functions are formed as before, and one obtains especially for

F, the Maxwell distribution:
was

We will shov that by the sustitution of Fl e ) (x3) for F1 (xz1 ;t) In the

kinetic equation %1 the functionals A. (xz IF,) becoe identically zero,

and that for the higher distribution funetions one obtains vrlal expan-

sos which are Ln agremt with the results obtained by de er18 and

by I"r and Nontroll. 19
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a. Zeroth order.-Since Ffe) is spatially uniform one obtains

from (3.11):

r-6 AIF4 ed) 5.. (3 .42)

Since S(O) i " pS) are the momenta of the s particles before the

s-tuple collision the Hamiltonian for the s particles can be written as:

Hence it follows from (31 42) that:

- - (,.43)

an to be expected. From (3.3b) one then gets:

* 
At

Introducing the relative coordinate r M q2-qj, the space part of the

x2 -integral becomes:

which is clearly zero. Htnce A1 (x, IF,) - o, as follows also iediately

from the Boltz=nn form (3.36) for A,.

b. First order.-Since A, a Ox DF ( O) a O, and since F, is spa-

tially uniform, me obtains from (3.18) and (3.43) indiately:
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From fbus, exp (-H3/0)} - 0 one obtains:

Introducing this in (3,45) the last term ir (3-46) clearly integrates to

zero. Since ab we saw in Section 5,

In (3J46ft)

the T-integral in (3.45) gives:

Writing H3  2 + + &13 + 023, and integrating over on gets:

Following t'yer, we introduce:

L 6--S- ( .8)

then:

Because fij 0 if rij > ro, the last three term are constants while

the first term is a function of 146.4I which will be zero if jq- I>

2ro so that:

ne. om obtains:
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from vhich follows:

Since F11) according to (3.49) depends on the coordinates only through

r lj.- l .it follows again by introducing relative coordinates that

the space part of the x:2-integral in (3.50) vanishes. Hence A2 (xlIF(e))

0.

c. Second order.-To find FJ2)(xlxeIFe one needs 4 )(xx x3 IF(e)),

for which one finds analogous to (3.4.7):

Since A,, A.2  o, -D,Fl ) - 0, and from the spatial uniform-

ity of (ie), one obtains from (3.19) imediately:

4A (3.52)

In order to got an explicit expression it is nore mcenent to derive a

differential equation for pJ2) . Operating an the left side of (3.5)

vith:

1+
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using the operator identity (3.46a) and carrying out the r-integral, one

obtains:

+ (3.53)

since it is easy to show that the upper limit T = gives no contribu-

tion. Following Glauberman, 2 0 we try to solve (3.53) by the Ansatz:

X( z  Iit) (554

The left side of (3.53) becomes:

_1 +

while, using (3.51), the right hand side can be written in the form:

+ fifd e~#L

where a is the constant defined by:

Hence from (s.,) one finds ioedately the particular solution:



33

From this form one sees that depends olonr2

and it goes to zero if r --o Since according to the general boundary

condition (Ck), s(2)(xlx 2 ) 4 2) must be zero, equation (3.55) is the

solution of (3.53) which is required. Introducing (3.55) in (3.54) one

has the explicit form for F2)(x.,x2 IFe)), which is in agreement with

the result of de Boer, and Mayer and Mntroll. Since F 2 ) depends on

the coordinates only throurh r - It'*- I, one proves as before that

A(XjIFie)) - 0.

It is clear that in this way one can go on. One will obtain in any

order:

g: in t -v.

where Xj9€.,q) will depend only on r . and can be expressed

as Integrals over combinations of "ayer functims f, . Hemce also In any

order AI(x, IF )) -0.



CHAKIU_ IV

THE MACROSCOPIC EQUATIONS

PREPARATION FOR THE p-EXPANSION

1. The mcrocopic quantities

The usual macroscopic quantities describing the state of the gas are

obtained from the first and second distribution function by further aver-

aging over the impulse variables. They are defined as follows:

a. Number density n(t).--This is defined as the average number of

molecules in the volume elenent dq, or as the product of the total number

of molecules in a system and the probability of finding a particular mole-

cule in d4. Or:

71 (, t). x - Jjr-f F(, t) .~,dF'(4.1)

In the following it is sometlmes convenient to introduce a dimensionless

function v(jt) by:

i)(fj) IT ft) f J7,; (4.2)

For a spatially uniform systea clearly v - 1.

b. fl c v1elocity A.-This Is defined by stating

that ad • ndg is the average mntum of the molecules in tk* volume d4.

Thereoe:

nt(I41, f ft) f £(, .t



so that:

c. The kinetic tewerature ( ).-This is defined in termE of the

average kinetic energy of the molecules in eq which is given by:

xX

This can be split into two parts:

7L~~t4- f -fF +t (1,'J - t)}d

The first part is the kinetic energy of mass motion and the second part

is the energy of the random notion. We now define G(4,t) by:

Clearly in equilibrium G/k (k a Boltzmann constant) will become the abuo-

lute therwdynamie teqperature.

d. Internal eneray density n( t) a(It).-This is defined as the

sun cf the randam motion part of the kinetic energy n(4gt) 0(4,t) end

of the averae intermolecular potential energy n(jt) O(4,t) which is

iven by

?,ct~*(ft) -j ,-f f#SJL O(i-LO)F(T t, )(4.4.e)

i(eo m1

I

a



36

2. The general mcroscopic equations

The equations which the macroscopic quantities satisfy are obtained

from the first two of the B-B-G-K-Y equations (2.10) and (2.11) by aver-

aging over the impulse variables. In these equations we will write (',p)

for ( 0*)p apd we will use the tensor notation with the usual sumaton

convention. We will use Greek letters for duy indices.

a. e equation of continuity.-Integrating (2.10) over P one ob-

tains

It~ ~~)2(t)- (4.6)

By dividing by v, this becomes the familiar equation of continudty:

2.!clt +I-fn()Ud1.t)) MO (4.7)

Introducing the "substantial time derivative"

this can also be written in the form:

' t + ..-M O (4.8)

b. Th general equstion.-Multiplying (2.10) by pi/m

and Integrating over J, =w obtains:

WL()~~+( ~ mv- sC-x~) 9)

where

.- (w F
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where we have put for the mentum of the thermal motion:

. v P -,nt U,

Pij(',t) is the familiar expression of the pressure tensor due to the

kinetic motion of molecules. Using (4.6), equation (4.9) can be written

in the form:

-LAWcINA4dt (4.11)

Now it can be shown that

(4.12)

where PO~ I, 4t) is defined by:

p.?,) 1A 0t)+I~fvfaf*) (4.15)

Therefore (4.11) become:

where:

is the total stress tensor. From (4.10) and (4.13) one sees that Plj(,t)

is symetric.

Proof of equation (4.12) (see also enskog2): Define the Pair den-

slty 4istributloo:

ncjf 44, r.fz



then n2 (*4,,t) is a symetric function of the two points q and , and:

jf q (3kjL 2fi(1 t TS f A k~ 0' OFL "fA, L)
where ki m (qj-qai)/j4-i 1. Now:

Ph- so jffdft > -tf4+ - ) I+~
Since n2  is a function of q+ t and tr,

22W W4L

Consequently

- j',atkfd <t tfl( 1 "fz')~

using the symtry of na(4,, 6).

c. The enTrgY transport equations. l*ultiplying (2. 10) by

integrating over p and rearranging term, one obtains the transport

equation of the kinetic energy:

where the kinetic part of tin beat current density Jt(40t) is given by:

t)- fF A Ft(

Using (4.14) amd (4.15), m can also write:+,,.,,
D(#GA
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where the rate of the deformation tensor Dij is defined by:

In order to obtain the transport equation of the potential energy

density, we have to use the second B-B-G-K-Y equation (2.11). By multi.

plying with O( R4 4 )/2v2 V integrating over p, p, q and rearranging

terums, one obtains:

Pt tnl ,,ddtJ#(-k 8tx-xt

where:

The transport equation of the internal energy density is obtained

by adding (4-17) and (4.19). This gives:

Similarly to (4.12). it can be shown that if one defines:

a L k 0

then

J 4
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and cousidering (4.12):

where

A)
J~, c tlf WidiiL))kd (-off *~4Jq

n ) F (14.214)

Thus (4.21) becomes:

71 +p~v (14.25)

where

J~t)(fit)

Note that the potential part of the heat current density (given by +

Jj2) depends only on the thermal moenta.

The pressure tensor Pj(jt) and the heat current vector Ji(qvt)

are identical with those of Irving and Kirkwood.

R* Exansions Of FAO)(X")bIFx,) MAn A',(X 1 Ir")

According to the empression (3-.214) for Al(x 1 IFk) and the formulae

derived in the preceding section one ned only to consider the second

distribution function for phases xlt, x& such that the sptial distance

jq* -q' I S We shall see that in the next stae (the h ro aiCal

stage) of the approach to 6quIllbrii all distribution functions will de-

pead on the coordijAtes through mcroscopic quantities which vary slowly

I
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wth position. As a preparation we will therefore in this chapter already

expand the second distribution functions in powers o: (ro • grad ), and

we will retain term up to the second order.

Since according to (3.23):

a ZlF ) -ffd , d F7P 6 t ,(4t) K,!x04  (4.27)

where:

t-,5!1 .a, ,b L . , '

we first expand the kernel K,2 . Using the center of mass and relative co-

ordinates:

,+ L - , , ,- • --- (4.29)

and the corresponding m nta:

aw shows easily that:

(0.e30e)

so tkst the qsrstor:



42

depends = on the relative coordinate and impulse and is invariant un-

der a combined orthogonal transformation of P12 and fz.

Call:

putting in evidence that it depends on the spatial coordinates only through

r 1 2 . One further has:

Since we are interested in those values of ; which are of order ro and

since for such rea an* readily shows that J l! ( is also of order

r we expand (4.33) in a Taylor series around A. One thus obtains:

K~cr,;R7r, +
+~ ~ f, )~ 71,,+

+ iW scj 1 r (tf,- th 7ir,,.,J+

It...

40 
+woo
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where:

(4.35b)

All the iT's are functions of 12 1 2 and ].2i which, have

the following properties, as can easily be verified:

a) Addin a constant vector to all momenta will not change the IT's

(Olilei invariane ).

b) lkder an arbitrary (proper or improper) orthogonal transformation

(435

applied both to r 1 2  and all the momenta, the r s transform like isotropic

tensors. 23

c) For an interchange of the two particles (corresponding to the

transfofttion (,,i ,i, )"(41., p,s, ~ %, r 1 )pr 0 and

TRI's I In unchaged, while theiTI's chsne sign.

introduci a the expansion (4.34) in (4.27) and carrying out the in-

togrla over tandl lea&s to the expansion:

N z .F~) - '++ J" J +. (4i. 6)



where

Tc0~ 1#7" te')to~d' /S.VY ss (4.37s)

S(4-37b)

(0A',d (4-37d~)

fl~-lY F4z (to (s3.2s1.):4p 7
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with:

OcrW,). --f-K 0, .( I ,4*) (4.4o)

Substituting the expansion (4.34) for the kernel K2, one obtains an ex-

pansion for the binary collision operator:

,o'° A+ a(,#19 +* 000., A + ' %
A,(I)F (7 a (I 1 (4.41)

We omit the explicit expressions, since they are quite similar to the ex-

pressionz 14.37) for the O's, and in fact are obtained from these by op-

erating with Q12 and integrating over P2 and r1 2 . We only note that:

I E' =Jf ,F 9?F~~)£4, ~ I(4.42a)

with:

This has precisely the sae form as in the spatial unifor. case, which was

discussed in Chapter IMv, Section 5. One can therefore transform

to the familiar Boltzman form:

It. ,uMsas±=s of i4' 1lf) WA(XxX. IF)an

In the sam way as in the pievious section, we ViiI eXPan F&(xjXu F. )

and AR(xz IF,). These fnctornals aft connected with the effects of triple
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collisions, and as a result the formulae are rather complex. We will

therefore only indicate the method, and show that the essential proper-

ties of the previous expansions appear here again.

According to (3.27), one can write:

with

JX .,3, O,,+ (to,) .) .'"

T o 1"V"(4 .45 )

We begin again with the expansion of the kernel. We are interested only

in such phases x1 , x2  so that I -( I :S to. In Chapter 3, Section 4,

we saw that for such phases the r-integral extends only over a time of

the order of the collision time -ro . Also in the integrand of K3 only such

values of the phase x3  play a role for which I- and (*4q I are

of order r o . It is therefore convenient to introduce center of mass and

relative coordinates according to:

and the corresponding momenta:

Then:
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+I -_ I

and one finds:

o i i s (4.4 7a)

Clearly the opeators ( depend only on the relative quantities.

Splitting in the kernel ]K3 the product of the 8-functions in the coor-

dinate and impuse part and using (4.48), one can write for the part of

the integrand in K3 which cms after the 0-operators (for k = 1,2,3):
A S) , I-  * +

II,,,,PSI,,
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where R2  is again r (i+ ) and:

A 1, P.),,- - t. -,Y, - + ,- 4,)

One can easily see that for all phases where the three distances :1"q,- I,
(k)

I'-'1 and 12-'1 are of order ro, also all the Xi are of order

ro . One also easily verifies that by an interchange of the particles 1

and 2 the %(k) change according to

(3) 411)

7(,e3) ,3)
'33

One now can start the expansion. Just as in the previous section,

we leave the iipulse part #j(k) TT6(.j--) in (4.49) (which depends only

on relative quantities) as it is, and expand the coordinate part. Since

~(k)
are of order ro, we write:

tatI

where we use the simmtion convention both for the Latin index i as for

the (Greek) index a,, which denotes the vector components. Introduce
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'*(k)this expansion [extended to second order in the Xi  in the kernel K.

Since the product UT5(A 2 +P3 T/3z"'t) comutes with the Q. there W141

occur exparsions in which the remaining S-operators in K3 act ot thJ- prod-

uct. It Is easily seen that one can write:

where

a 6 (4.54)

Since T is of order To, v is of order ro, and one can therefore fi-

nally expand in powers of (-1/2 ;*2 + v) around . Doing this also

up to second order, one finally obtains the expansion:

+ V4 t~r

Cd)

+

(4.55)

k
where we have introduced for %bbreviation the differential operator V

which when acting on a product of functions of 1 Is defined by:
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Thr form of (4.55) is completely analogotu to the expansion (4.34) for K2

and the functions w are analogous to the functions TT. They axe defined

by:

t I.'

fa-

& ,, inI~ , "f -( -~ A (I) -.l "

f Y +

,.., .,. . i .%)- e- ~,, (,ea.,,.

+ S "+ " 9
I)(4.56b)

+---,-----
(AA

i+ +
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"', 1 1 0,0 S,-X 0 i't ' (1 "" 1 " 4 +

* ~0),,.,?I~ + (0L,,.a' A'"' (6., i" C,, ' j~)

S,,. 1 ,, o e),,, -A(e, . ,

+ Qi,,3s) , - o0, a..)

' ( ,,)('p
+ C6,+6,) 'Jo (6,J0+6, ) J

lot (4.56e)

In here the only undefined symbol is the operator 0(2) which is part of-,r

the two particle operator S 2) (1,2) expressed in the two particle center

of mass and relative variables. One has:

It is easy to prove that the functions w have the same properties a),

b) and c) which were mentioned on page 43 for the functions TT. Intro-

ducing therefore the expansioa of K3 in (4.44) we get an expansion for

j)(x,jl1F,) which is of the sam for as the expansion for F( )-  We

write, analoous to (4.36):



where:

~2Do ' J, Ife, J it1

,)A,

Th spript Sl (n4.r5ragi o yn9b)o ats~~r it e

fff 2~ It)), (4~.560e

Finallya sineceange triple cartlls1nd2 ntOne istgiven by:rgrdn

.ith:
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the expansion (4.55) for the kernel Y.3 leads to an expansion:

, / ,F, ) (?M' s + LPA + a)3 Oc, ',,s
v" ) + fA + Q + a(8()A + . .)s (4.65)

similar to the expansion for A,. We omit again the explicit expressions

for the a's since they are obtained immediately from the expansion (4.58)
(1)

of the F2

. Expansion of the macroscopic equations

In Section 2 we have ierlved the general macroscopic equations from

the B-B-G-K-Y hierarchy of equations. These equations are exact, but form

only a general scheme, in which any closed (and approximate) system of equa-

tions for the five macroscopic quantities will have to fit. In this sec-

tion we will derive more specific macroscopic equations from the general

kinetic equation (B) of Chapter 3, in which we will use already the ex-

panded forms (4.41) and (4.63) for the binary and ternary collision oper-

ators. The basic equation is therefore:

3I7( ~ _ pro) +a11 .- 4 f IF) +ZI (a"' Aa,*A)

+ _L (f a A +.^6A +..... (464)

Notice that this equation, just as the Boltzmnn equation, is a differ-

ential equation in the coordinate q, and an integral equation in the mo-

Mentua p.

The procedure to obtain mcroscopic equations is the sam as used in

Section 2. Integrating ( o.6) over p and dividing by v gives again the

cotJnuity equation:



in + 1 u4) =0

since the right hand side of (4.64) does not contribute. Then by multi-

plying with 4 and integrating, one obtains the equations of motion in the

form:

+ -L a fd o:,,S ) +

Pt ?LI
+3 +4s L 4' &~~~j (4 65

k
with the same Pij as in Section 2. From the expression of the 6's

in terms of the corresponding expansion (4.36) and (4.58) of the second

distribution function one finds:

Since 20/ari is odd in r, clearly the contribution of the symmetric

Y's vanish. Since according to (4.38a,b) and (4.60ab) the antlsynet-

ricX's can be written as a divergerue, one getj from (4.65) and (4,66),

the equations of motion in the desired form:

P " P¢*004t '
vith:

P,(468
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(I tR) + J .4 J 4s

Finally by multiplying (-.64) by ;/2m and integrating one gets the

kinetic energy equation in the form:

on i-f..s+ +.. (.7o)

Since, as mentioned at the end of Section , o)s( ,p(Fj.) can be trans-

formed into the familiar Boltzmann form, its contribution in (4.70) will

be zero according to a familiar argument (see Chapman and Cowling, p. 67).

In general one has:

and therefore in general both the symmetric and antisymetric J's will

contribute. Splitting Pi according to:

+ t - (h.T2)

then the second part which is syuetric in the two particle& together

with the antiysetric r# can be written as a divergence. One fInds

for this part:

_P 4) O tf

4i
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with:

T.'(tF)=

-0' (4-73)

The first part of k4.72) combines with the symmetric "s, and altogether

the kinetic energy equation becomes:

7)P(9 d2 + R lF)(4.74~)

with:

R. IT = #t +

_-..ifffpd eJ* L .{7,o+ - ' -'+ 7""...|.... .**.****

Sinre in the kinetic stage the equation for F2 (xl 1xF.) has the

same form as the second B-B-G-K-Y equation, the equations for the poten-

tial energy will be the same Es (4.19), namely:

with:

n 4 (IF4) *# )F (.77)
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Using the expanded forms €.) (4.58) for F ° ) and F( ) ,, clearly the

right hand Bide of (4.76) becomes -R(jFj.). Ir co only the symmetric

's will appear, while in because of the factor yi/m both the

symmetric and the antisymu.tric X's will contribute. Adding (4.74)

and (4.76) gives the total energy equation in the same form as in Section

2.

What is achieved is the expression of the stress tensor Pij and

the total heat flux vector Ji in terms of the first distribution func-

tion only. This will be the starting form of the macroscopic equations

in the next hydrodynamic stage.



CHAPTER V

THE THEORY OF THE HYDRODYNAMICAL STAGE

1. The basic equations

As explained in the introduction, we assume that as the gas relaxes

further'- towards the equilibrium state a second coarse graining in time

(over a time of order to) is needed in order to describe the slow varia-

tion of the macroscopic quantities in time. On this "hydrodynamic" time

scale, we assume that the first distribution function F1 depends on time

only through the macroscopic quantities n, u and Q, so that:

where as before the vertical bar denotes that F, depends functionally on n,

f and Q, which contain the whole time dependence. The form (D) is assumed

to be valid for any initial distribution F1 (x;o) after an initial period of

order to. The macroscopic quantities are expected to vary smoothly on the

hydrodynamic time scale, and to fulfill the basic hydrodynamic equations of

the form:

in o'n, U,

The unknown functionaUl FI(, 11n, I, 0), N(jIn, U, *),V(jtn, I, 0) And
58
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e(In, i , Q) must follow from the kinetic equation (4.64) and the correspond-

ing macroscopic equations (Chapter TV, Section 5). They will be determined

again in successive approximation. Since at this stage the deviation from

equilibrium is caused by the non-uniformity of the macroscopic quantItles,

the development parameter (called L) will be a measure of the spatial varia-

tion of the macroscopic quantities. Physically p will be of the order of

the relative variation of the macroscopic quantities over a mean free path.

However, it is more convenient mathematicall to use p as a formal unifor-

mity parameter, with -- 0 corresponding to the completely uniform state.

The expansion of the basic hydrodynamic equations (F) will .hen be of the

form :

+" "'(5.la)-a n + + " "

W = U! + Ut.. (+lb

-I + (2) ( .... (5.1c)

and the expansion of F, will then be of the form:

IF -, (,r,.6 (?I,,,,, M(+(,l Ifi, ) +.... (5.2)

Note that (5.1) gives the time derivatives of n, 0, Q; these quantities them-

selves are still determined from F, in the usual way for all values of p. We

require therefore that:

. .fO 5. 3"
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and for i -

--mfs tf -0 (5.4)

2. Comparison with the macroscopic equations

We will now compare the hydrodynamic equations (5.1) with the macro-

scopic equations derived in Section 5 of Chapter IV, in which only the first

distribution function occurs. Putting in the expansion (5.2) will lead to

a p-expansion of the macroscopic equations, if in addition tvery diffe-entia-

tion after the coordinate I in multiplied by the uniformity parameter . This

is necessary Vor consistence since the differentiation by I operates only on

the macroscopic quantities and is therefore just a measure of the non-uni-

formity of the gas.

To abbreviate the formula we will use the following notation. In the

macroscopic equations of Chapter IV, the functionals Y of F1 occur, which

involve F, as a product such as 17 Fj(jpi). Therefore introducing (5.2),

one gets in zeroth order only fo, in first order fo and fl, in second order

fop f1, and f2, etc. We write therefore the p-expansion of a general func-

tional Z(lFj) of this type in the form:

Z( IrF)- Z , + Z I.,
+ Z' zfiLt) + Z +,LL]*..

With this notation, one obtains fr A (4.68) and (4.69) for the stress ten-

sor the expansion:

+ ,. ....
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where:

P = t (5.6a)

q;! q,.. -fdl ffdf '(. ,, t+ .. (5.7b)

,.+31"(5.7c)

Analgously one obtains from (4.75) and (4.78) for the heat current vector the

expansion:

, + ,I ,J (5.8)

where:

ji't + ,,
j,, (  +a lO + . e, .t." (5.9)

J(~I&B)W4W~d~t~ J~~I~~w.(5.11.)J ilc.) (flit,. " "
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tf ff, _ ___,t.J, -=-JSf.)p~(L CLJ2., I.+..o .,*'

(5. 1 1b)

JO 1 ,. + +

Finally the functional R defined by Eq. (4.75) can be expanded in the form:

R - A , I t R3 lll,+ (5.1.)

1,~ R " .+ . ,+"

where:

(5. 3Aa ),, (i.) In, U, u."

+ 0

-RA In ,t.II'.t:s L,
L,,,,(5.14b)

7-". It. L>+.) +i;: ,,. ,'<'i's,( t. .. (.,b
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Equation (5.13) starts with the first power of P, since:

is equal to zero, if fo is the Maxwell distribution in * (compare also Sec-

tion 4).

Substitiuting in the macroscopic equations (4.67) and (4.74) these ex-

pansions for PiJp Ji and R, one can then compare the continuity equation and

these equations with the hydrodynamic equations (5.1). Equating equal powers

of one obtains:

' (5. i5a)

N "~~j,&O) j = (. 13b

U%~inI.8) +(5.16a)

nm o (5. 16b)

~~~Un .) u.f u + P
(5.17b)

(.Ra
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The internal energy equation obtained from (4.74) and (4.76) does not

play any particular role for the determination of the hydrohynamic equations,

but since we need the result later, we will also expand this in powers of p

analogous to (5.1):

,,J= ( .6+)

where:

- -4 I ) 7 (5.19b)

and Eo el... are the result of the p-expansion for the internal energy e.

. The expansion of the kinetic equation

So far the development is purely formal. The functionals U i) and 9(1)

in the hydrodynamic equations as given by (5.16) and (5.17) still depend on

the unknown functionals fo, f, etc. These have to be determined from the

kinetic equation (4.64), just as in the kinetic stage the unkrown functionals

F8 had to be determined from the B-B-G-K-Y equations.

To do this, we first expand the kinetic equation also in powers of p.

Writing:

0 r n r n " + + .. . . ( 5.2 )

where the r ) all depend on q, p and functionally on n, u and O, one obtairs

by comparing(5.20) with the p-expansion of thea's (a& given by Eqs. (4.41)

and (4.63) of Chapter IV, using (5.2) and again multiplying a11 derivatives

after q. by the uniformity paraeter IA):
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L746 it) + " ( .- )+...

0, +' l.+0,1

~ I (5.21c)"fit 41i )3

*+" ,s..l,+4)s(,l.g) .... ,

an arbitrary functional *(;, ',Q):

S[$(A + (5.22)

Using these operatore, expanding the rufthsnd side of (5.20) and equating

equal p owers of tah or obtains:
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D0~ = r) (5.23b)

(5.23c)

and so on.

These equations are the basic Integral equations which must be solved,

subject to the auxiliary conditions (5.3a,b,c) and (5.4). Note that the

first equation (5.2)a) involves only fo and should therefore determine fo

completely. Knowing fo allows one to find the hydrodynamic equations in

first approximation. Therefore the second equation (5.23b) becomes an in-

!eW-al equaton fxr f1 . Knowing f1 one can find the hydrodynamic equations in

the next approximation, and in this way the successive approximation method

goes along. We will only discuss the first two approximations, which corres-

pond to the Euler and Stokes-Navier forms of the hydrodynamical equations.

4. The ideal fluid equations (Euler)

Clearly one should expect that the solution of (5.23a) for fo is the

local eailbriu distribution:

with:

(5.24b)
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The auxiliary conditions (5.3a,bc) are then clearly satisfied. It will be

sufficient for our purpose to show that (5.24) satisfies the equation j°0)= O.

From the properties of the functions go (see (4.32)1 and % [see( 4 .56a)] dis-

cussed on p. 43 and especially from their Galilei invariance, one easily ob-

tains from (4.37a) and (4 .59a) if F, is given by (5.24), that:

(!5.25)

These pair distribution functions have therefore the same form as in equili-

brium except that the and occur Instead of the and As a re-

sult one proves exactly as in the equilirium case (Chapter ITT, Sect. 6)

that all thea(°p)s(,p Ifo) are zero, so that also 4O) . 0.

There remains the question whether (5.24) is the only solution of the

equation 4o) . O. Since, as we saw, o(o )s can be transformed to the fa-

miliar Boltzmann collision integral, one can appeal t3 the H-theorem to

show that (5.24) is the only function which makes a o)s equal to zero.
We have not attempted to generalize the H-theorem to show the same fact for

the highera's.

Using the jxplicit form (5.24) for fo, from (5.5), (5.6), and (5.7a,b)

one obtains the zeroth approximation of the pressure tensor Pijo in the form.

- (5.26)

where the scalar pressure p as function of the density n Is given by the

equilibrium virial expension, which is:

tsow9 TA-,( mLL (P) -... - 527)
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where

B,6 - 4,~

using as in Chapter III the Mayer notation:

For the proof of (5.27) see Appendix I.

Using (5.26) one gets from (5.16a):

, + .,. ..W+) (5 .2 8 )

and therefore in this approximation the hydrodynamic equations become the

Euler equations:

tie (5.29a)

n in (5.29b)

Note that the functional eG()(4jn,'u,Q) is not completely determined by

fo, since R, involves fl. In this approximation it is therefore not possible

to write down an equation for aQ/3t. However it is possible to find an energy

equation. First note that from (5.10), (5.11a) and (5.12a) follows that:

Jj J&00 (5-30)

As to be expected, the total .eat current is therefore zero in this approxi-

ation. From (5.19a) one then finds that:
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with:

e. =-eoe-~ ~ ~ e + }Po ,{''" ""
- + # [ ' .) + Y- (It.)+"" (5.52)

: ~-G+±ff e n~ + -n,& i,~, L3

The energy density e0 is therefore found from the virial expansion of p

according to the formula of equilibrium thermodynamics. Hence the energy

equation becomes

21 -t(5-33)

expressing the fact that all changes occur adiabatically in this approximation.

For the following we will need a simplified expression for 1(1) which

can be obtained since the second part of the expansion for R, [see Eq. (5.14a))

can be evaluated. One finds:

( ,)= - a + Q c")*nCd"...

+ ~ ~ o Ito",. t,)+..l ""

where:

- 11 (~R~,) (5-55a)
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(5.5b

Prcof: B., explicit calculation one finds:

, .A . { 1 .)K .Q, E,+

X7 It.) = 1 {" All) e " - L

where:

(e)4*

We mentioned in Chapter IV that the n's and w's are isotropic tensor fileJ.ds

.I4 
7r -~.

depending on r, , 4, andy, . As a result the A, 5, and c are isotropic

4. 42

tensor fields depending on r, and f ,. For a general isotropic tensor

Ilk. 1of this kind, the integrl: :

viil be a numerical tensor of the same rank.* Hence the numerical tensors

For a proof of this theorem, and some information about isotropic and nuueri-cal tenrors see Appendix II.

1P L
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obtained from A(1,1) and 84 ,P.) must be zero, while the numerical ten-

sor Cjj obtained from the C (4, r, i) nst be constants multiplied by the

Kronecker bij. Therefore the second part of RI becomes:

JsX*-ffdpd- (:""O +Z~U ~()

S .' + C, +. .....
C " + + ....

.......................... }

From (5.17b) using (5.26) and (5.50) one then finds (5.54).

. Determina" ]on of the form of f,

a. General me-tod.--To derive the bylrodynamic equations in the next

approximation, one first h&' to determine f2 from the kinetic equation (5.25b).

From the definition (5.2?) of the o -tor one has:

- I( ;') ILJ+ 41;3

9 (+~" -.31 z 05.36)

--. q + ,, A .+ ...

Vhere, -using the result& for , j and 9 from the previous section

and writing againfo ='f :

(5. Y7a)
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, -* + -. + y

By writing I(I)fo, except for so far as f, is concerned, as a power series

in the density n, we have separated the density dependence due to the inter-

action of the molecules in pairs, triples, etc., from the dependence on the

relative changc of the macroscopic quantities n, u, and Q, which are a meas-

ure of the non-uniformity of the gas and which are taken into account up to

the first order. One can also say, that the uniformity parameter v is a

function of n, since P measures the relative change of n, t, and Q over a

mean free path, and at higher densities the mean free path X is no more in-

versely proportional to n and should be written in the form:

)(538)

InvEq. (5.23b) we will therefcre also develop the functional j in

powers of n. One obtains:

(1) - .E (j+ ) -[A , Ws .,,J
(5.39)

+nILU11+Q11I)

where for abbreviation we have put:

Ait~l (5. 4)~o

7rjI
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We will now seek a solution for f, also in the form of a power series

in n. Putting:

+ tg . +i +.'. (5.41)

and equating in (5.25b) equal powers of n, one obtains:

=62 (5.42b)

These are inhomogeneous linear integral equations for fl,o, fl,1 which have

to be solved successively. Since the auxiliary conditions (5.4 ) must hold

for all densities, both f],o and fl,1 must fulfill these conditions.

b. The Chamn-Enskog theory.--In our formulation this theory gives the

soluticn for flo. The left hand side of (5.42a) can be simplified and written

in the form:

The right hand side ( |it is a linear integral operator, which is iso-

trovic in the I -space. One now can make use of the following theorem:

Ifj (f) is a linear isotropic operator in I -space end Rij....(4) is an

isotropic tensor in this space, then a solution of the inhomogeneo'AL equation:

J~l - , .. b.
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will be an isctropic tensor of the sem rank as R. If the homogeneous e-

quation J(f) a 0 has no solutions this isotropic tensor will be the only

solution. Otherwise we have to add to the isotropic tens~r a linear com-

bination of the solutions of the homogeneous equation multiplied with the

appropriate numerical tensors.

For an indication of the proof, see Appendix II. In our case the

homogeneous equationa(O)s a 0 has the five solutions 1, and corres-

ponding to the number, momentum and energy conservation in the binary col-

lision. Since the solution of (5.42a) has to be orthogonal to these five

quantities (with weight to) according to the auxiliary conditions (5.4), it

is clear that the solution will be uniquely determined. Define the functions

vi(0)(P) and wij(o)() as the solutions of the following integral equations,

which are orthogonal to 1,, liand rwith weight functionTo

According to the theoreu, vi"°)@) an (o)( ) ,ust be an isotropic vector

resp. tensor field, since the right hand side of (5.J4a,b) have this property.

Therefore Vi (O) an l(o) mu have the form:

04( ) 1
V *., - -

~~ (5. 4 3ba

According to thWherm4i'o)1)ad i)(I musbai) oroi vector~b

v!here V( 0) mr two scaLar functions of (0).

Therfor Vi nd jj mst ave he orm

(5.44a
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From the form (5.44b) one sees easily that Wij(o) is orthogonal to 1, A and

3: this is also the case for Vi(o)if:

J ~vo d~r'()~a 0 (5.45)
In terms of these functions one can then express f1 ,o in the form:

~ 5 *(jfl, 1 9) 5~(){ ~(5.46)

There remains the problem of finding the scalar functions V °o and W

This can only be done in successive approximation, either by using varia-

tional methods or by developing V (O) and W(O) in an appropriate set of ortho-

gonal functions. For the details see the book of Chapman and Cowling, Chap-

ter 8.

c. The effect of triple collisions. Knowing fl,o, the left h.nd side

of (5.42b,) is completely known, and we can therefore determine f1 ,1 in the

same way as flo. Note that the integral operator in (5.42b) is the same

as in (5.42a) and involves therefore on& the binary collision cross section.

The triple collisions enter in the left side of (5.42b) because of the term

,e(O)s(Ijfo,fl,o). The left hand side therefore becomes much wore complicated.

Using the isotropic tensor property of ao and the properties of numeri-

cal tensors one can abow that:

The proof Is completely analogous to the calculation of the second part of

R outlined on p.70. That the rosult is zero is due to the fact that since

the trace of Wij(s) s zero the corresponding numerical tensor of the second

rank mast also hae zero trace and is therefore identically zero. Therefore

qS beces:
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(5.4+7)

By explicit calculation one finds:

a, ~~)= ~+ +

~71 (1~ S+ (5.48)?0 . . \ /,, +p1XI]p.

where

+ (5. 49b~)

viag (5.4d)N-t e . , ,

I

Cps J 9A, 5.49e

+ +AA-

A 4,m

k-4)A# rQ& (.49f
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In here the %D.4 and o [given by (4.35b), (4.56a) of Chapter IV] are writ en

as functions of , 2, and '. Because of their properties mentioned on p.43;

Li, jp i and are isotropic tensors. Furthermore since the trace of

Wij (0) is zero, the trace of )aij is also zero. Therefore cne can write:

17A ('15 -5d)

Therefore (5.42b) can be written in the form:

with:

(5.52a)

-0 j(q) SO~J

(5. 52b)
+ fA- - +

Note that the term with b log n/q1 cancels.

Corespondng to t . V1(o and th we introduce V1)( ) and

WJJOL) as the solation of the Integral equations:
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(O" " - C (5.53b)

One can conclude again that the Vi(1) and Wij (1) are isotropic tensor fields

and that they must have therefore the form:

(5-54'a)

where V (I ) W1 (I) and W2 (1) are three scalar functions, which still must ful-

fill the conditions:

in order to fulfill the auxiliary conditions (5.4). One gets two function,

(1) (1)
W'' because the trace of Wij will not be zero since the trace of Mij is

not zero.

6. The .8tokes-Navier equations

With the known form of the distribution function f, one can find the

K
stress tensors Pij, 2 and Pj , given by (5.Ta), (5.7c) in first approxima-

tion and hence the hydrodynamic equations up to order 1A. The stress becomes:

w+ # io

wheitrOO:
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+ +

PA ' +

and:

7pi
.7r (1 f.o. 0 A)-

The total stress tensor pbij +?ij,l has therefore the familiar Stokes-

Wavier fora for viscous fluids. Two viscosity coefficients appear, the shear

viscosity coefficient ill and the bulk viscosity coefficient 12, for which

one obtain; expansions similar to the virial expansion for the pressure. The

zeroth approximation nl ( ° ) is the Chapman-Enskog value; nij ( ) consists of two

parts,, one depending on the triple collisions (which come in through W

and the other depending on the potential energy O(r). The bulk viscosity

q8 is in this approximation proportional to the donsity and is a consequence
of hiher order collisions through Ws( l ) .

The hydrodynamic equations up to order 1A become:

* =
(5arA
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where to be consistent we should use for the pressure p the virial expan-

sion up to the third virial ,ooefficient.

By substituting the form of f, into the formula (5.10), (5.11b), (5.12b)

f., the heat current density and taking terms up to orderlt, one obtains:

with:

"'r + nTCI . . (5.61)

and:

ers) #-P ;- rV v (5.62a)

= *fd"O~~(p 'p

-~~~ *fid4
W* r 1 (5.62b,)

+ -~-fd~p4 # 4ff~ft

Equation (5.60) is the Fourier law for heat conduction and T (except for a

factor jk/0))Is the hebt conductivity coefficient, for which one obtains

again a virial like expansion. The zeroth approximation T(O) is again the

Chapmn-ftskog value. The first approximation co') Consist like %1(") of a

triple collision and a potential energy part.

As in Section 4, it is not possible to write dcvn the B-equation up to

the corresponding order in a, since 0(') depends on fR and to therefore not

cmpletely determined. Froa (5. 34) one can calculate *() and one can
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simplify the e'xpression for ON). However, since the results would only be

needed in the next approximation, we omit the detailed formula.

One can write down the energy equation up to order P2. The result is:

"r 'A(~~ * '.M * 4,J+i' (5.63)

with:

where ',* is given by (5.2) and:

(4) )

+ ,)r.>+,. 8,,S,*)+..}J

,-v .40(



CHAPTER VI

COMPARISON WITH THE ENSKOG THEORY OF DENSE GASES

1. Introduction

For the special molecular model of rigid elastic spheres, Enskog8 de-

veloped many years ago a theory of dense gases, in which only binary col-

lisions were considered. For an account of this t. ,ory see also Chapter 16

of the book of Chapman and Cowling. 7 In order to compare Enskog's theory

with ours, we will calculate the first density corrections to the viscosity

and heat conduction coefficients frm our formula using the elastic sphere

model. We will see, that the results are identical with Enskog's results

if we consider o those Darts of the density corrections which are due to
*

the binary collisions. However we were'unable to calculate explicitly the

contribution of the ternary collisions, and it is quite unlikely that this

contribution vanishes for elastic spheres. Even for this simple mcdel, the

complete density corrections are therefore not yet known.

For elastic sphere; of diameter ro the intermolecular potential 0(r) is

given by:

0>

It is often convenient to consider 0(r) as the limit of an inverse s-th

power law repulsion:

(.t) ,,(6.1a)

,.wk

02
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with ro  lir s
56"

Bogolubov has remarked that for elastic spheres one can transform the

binary collision term A1 (4, PF) of the kinetic equation to the form:

A ,II 1F =fd"*f d; As:q ) F ( - (6.2

In here i is an unit vector in the direction of the line of centers of the

two spheres in the collision (,) *(*,*) measured away from molecule 1.

Equation (6.2) has the Boltzmann i o'.n, except that the difference in posi-

tion of the two colliding molecules is taken into account. It is the form

of the collision integral from which Enskog starts. * We could therefore

make the transition to the hydrodynamical stage similar to Chapter V but

startIng now from (6.2). However we prefer to calculate directly the trans-

port coefficients from the formula derived in Chapter V.

2. Some intermediate results

Referring to the basic equation (5.51) for the determination of f,

we will calculate for the elastic sphere model all terms In Li(p.) and

Mij(p) which depend only on binary collisions. Ore easily finds:

P ,. . 0

4- 0

*Ixcept that ftskog in addition multiplies the collision cross section by

1 +(5/8)nb, b - (2x/3) ros = van der Waal' b, in order to take roughly the
triple collisions into account.
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To calculate Uj and CjJ we first have to find the integral:

Calling this integral p.1 , (%,j), we will prove that:

,.+~ ~ ~ .2)>0

+ p'J " )} (6.3)+ 9(<p-,J, WO %-))

where the notation is the same as in (6.2).

Proof: According to (4.35b)

Since the intermolecular potential changes rapidly at r ro, there will be

only a contributibn to the integral for r close to ro . Therefore one can

neglect the dependence on Pi in Jri and replace it simply by ri . Using

the same cylindrical coordinates (1, b, 0) for the r integration as in

Section 5, Chapter III, one then can write:

o ,j= .. 4Js eJIJ, t I +., 3% ST-.)(-2

For fixed (b,0) S ( )-40 .)8(x- pi ) is a step function of I with discon-

tinuities at 1  + 4 2 -ba and 12 = -r 0 2-b? . For I < 1.

(2) ~~8(-~a and I > I~ S (2e

'--)5(' where p.,- are the momenta after collision. For

12 < I< I, one can consider S(2) 8(p-) 8 (- -) equal to zero since the

momenta p, p, are then so high that they will never be close to and .

In the I-integration the only contribution comes therefore from the neigh-

borhoods around 1I and 12. Let the unit vector in the direction -r at

(b, -0, 11) oe e. then one sees that: 4

!
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with ( " > 0. Using these results and carryine; out the f-integration one

obtains (6.3).

Introducing (6.3) into the equations (5.49de) for Vi  and Fij all

integrations can be carried out, and one finds:

(6.4)

CoMWing this with the general form (5.50ab), one concludes that:

3' lpt 
C.2,,, 0

Next, from (5.35a) one can show by a partial integration, that one can write:

and therefore for elastic sheres C(O) . 0, since 0.

Substituting these values in (5.52) one obtains:

(6.6)

•0 6 6 . "A
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where Li  and Mij are the contributions from the triple collisions and

are given by:

(6.7)

-- - e vfs~,.#s-c 7 4 0, W.

Since the integral equations (5.53 )are linear, one can split the solutions

in a binary and a ternotry collision part. Writing:

(1) (1) (1)=I V',. + VI '" (6.8)

the binary part will fulfill the equations:

Vi. (200 .4 (6.9)

which except for a constant have precisely the same form as the equations

(5A3) determining the zeroth order or Chapman-Enskog approximation. There-

fore one can conclude that:

(6.10)

V5 4i42 Ce)1

s'' 0

As mentioned in the introduction the contribution of the ternary col-

lisions has not been evaluated.

. Calculation of the transport coefficients

For elastic spheres the Capman-Enskog value (reference to Chapter 10
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in Chapman and Cowling) for the viscosity coefficient is:

According to (5.58) the first density correction ) consists of two

parts. The second, or potential energy part of T11  can be transformed

for elastic spheres into the expression:

and from the result (6.3) for i(l) one then finds that this part* is equal

to

Together with the binary collision part of W(), using (6.10), one obtains

for the total "binary" contribution to the density correction:

rCl) 5JL4 () (6.12)
,g " I

in agreement with Enskog. The bulk viscosity coefficient rW vanishes in

this approximation since the trace of cki is zero.

The Chapman-Enskog value for the heat conductivity coefficient is (see

Chapter 10, Chapman-Cowling):

According to (5.62), the first density correction (1 ) consists of three

parts. The first potential energy part can be transformed for elastic

It corresponds to the part due to the effect of "collision transfer" in
the Emko6 theory. See Chopmn and Cowling, p. 281 and p. 282.
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spheres into:

nnd hence, using (6.5), one finds that this part* is equal to:

The second potential energy part goes to zero for the elastic sphere model.

Together with the binary collision part of v(1), using (6.10), one obtains

therefore for the total "binary" contribution to the density correction of

the heat conductivity:

(I) (6.14)

again in agreement with Enskog. It should be noted that the complete Enskog

results contain a rough estimate of the effect of triple collisions (see

footnote on p. 83) which in our terminology amounts to assuming that:

It is agniv the part due to "collision transfer." See Chapman and Cowling,
p. 281 and p. 287.



APPENDIX I

DERIVAtION OF THE MAYER EXPRESSION FOR PjJO

We have to show that:

where the 01 and P2 are the quantities defined on p. 68.

Our proof will be similar to the one used by Rushbrooke and Scoins.
22

using (5.24) and (5.25):

= [no + f ( + V +...

Following Born and Green,llb introduce a scaling variablj I by:

: V = V'
then:

Since the integrand vanishes for rJ2 > ro/L, the dependence on * of the

domain of the integration can be neglected. Therefore

'J,dr €<(elf; = e~ dr'i (<,*:.

fq1

89
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Next, o e can write:

jV~ ~ ~~h~. A*Isi t t13I
V f df3 

))

since the integrand is independent of the position of * if V is largo. Us-

ing again the scaling variable 1, and the symmetry of the integrand:

V

Sqq; f

since again in the q and integration the dependence on I of the do-

main of interaction can be neglected. Hence going back to the unprimed var-

iables the integral beccmes:

' ! 4tc' aJjq f,.:,,t,)
= -2 I/~~. ,~ - -

The method can be extended to the higher virial coefficients, but since they

are not needed we omit the details of the proof.

I



APPENDIX II

ISOTROPIC TENSOR FIELDS AND NU14ERICAL TENSORS

Definition of an Isotropic tensor field

Let an arbitrary orthogonal transformation (proper or improper) of the

coordinates i be denoted by:

A tensor field is a set of functions Kij...I of the ti, which in each

point transform as:

Ktj it -- IT ..

The tensor field is isotropic if the transformad components KUj...I are

the same functions of the transformed coordinates q as the original com-

ponents were of the original coordinates, that is if:

. , ,"*) -- K ...1. (;', <,") (2)

If (2) is only valid for a proper orthogonal transformation, while for a

reflection one has:

,1 = - T i"T IK ep" (2a)

one calls the tensor field skew-isotropic.

Definition of numericral tensors

If for an arbitrary proper orthogonal transformation T4' a tensor Nij...!

91
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satisfies:

.. ; T T. A "" (3)

then we call the tensor a numerical tensor.

Note that in the books of Jeffrey2 4 our numerical tensors are called

isotropic tensors.

From the definitions (2) and (3) it follows immediately that by inte-

grating an isotropic tensor field over the whole space one obtains a numer-

ical teinsor.

In the following we list some properties of isotropic tensor fields

and numerical tensors which have been used in the text. For the proofs see

the articles of Robertson23 and the book of Jeffrey.2 4&

Properties of isotropic tensor fields

a) The zeroth rank or scalar field must be a function Z(J) of

[-II.

b) The first rank or vector field must have the form:

Lj L~ (Z
c) The second rank tensor field must have the form:

+

and, especially if the trace of the tensor field vanishes:

ej _e

Properties of nmerical tensors

a) There is no first rank numerical tensor except zero.



b) The only second rank numerical tensor which does not vanish is a

constant multiplied by the Kronecker bij. Therefore if the trace of the

tensor vanishes then the tensor vanishes.

c) The only numerical tensor of the third rank which does not vanish

is a constant multiplied by Cik1, where

1 (i,k,) is even permutation of (l,2,3)
ikI -1 (ikj) is odd permutation of (1,2,3)

0 otherwise

Therefore if the tensor is symmetric in any two indices, the tensor must

vanish.

d) The general numerical tensor Pikim of the fourth rank is:

,Lj~41  ASikm /4 (Si, SAM + 510'At (Sitg ;* - 341;

with constants pi. Especially if the tensor is symmetric in (i,k) or (,m),

then

} 4 ~u A SiA S140 +,AiS Uj' 4V 4iOMA S 3' &JS

If in addition the traces formed from the first two or last two indices van-

ish, then

Finally we will prove the theorem stated on p. 73. A linear Isotropic

operator J acting on an arbitrary function f( of the set of vec-

tors ra...Is has the forr:
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where the kernel K has the property that for any orthogonal transformation

T:

k(T .PITI,;".Tjo) = K( a 1',,,0 IS) (5)

Consider now the linear integral equation:

where Rij...(P) is an lsotropic tensor field so that:

Ri... (TP) = TT T...RP) (7)

Let ms assune first that the homogeneous equation J(f) = 0 has no solu-

tion except f a 0. For each set of values of the indices i,, ...1 there

will then be an unique solution of (6) which we denote by fl *..., From

(6) it follows that:

..., r ~~~I is IV_' Ii-., (it.",,)...cl:"-I)

where we have used the isotropy property (5) of the kernel K. From (6),

(7) and (8) follows that:

r m .i ch ,) Iu ..., (T ,. -,T

f rcsn which one concludles that:
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which Indicates that fi3 ...1 (
7 1"".s) is an isotropic tensor field in the

space of the ni having the same rank as the RiJ... "

In the case where J(f) - 0 has solution x(1),...,x(n) we obtain

again an isotropic tensor solution of (6) in the function space which is

perpendicular to the X(W). Then, adding to this isotropic tensor solution

the appropriate isotropic tensor which is composed linearly of the X's, we

will get the general isotropic tensor solution of (6).

}a- - - - - -

--
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